Date of Award

Spring 5-2017

Embargo Period

12-19-2017

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Architecture

Advisor(s)

Daniel Cardoso Llach

Second Advisor

Eddy Man Kim

Abstract

This thesis explores the potential of a concurrent physical and digital modeling environment. Inspired by constructionist notions of embodied cognition in design, a novel interface for design modeling is presented where designers can take advantage of the affordances of both physical and digital modeling environments, and work back and forth between the two. Using Processing, along with the Kinect depth sensor, the system uses depth data read from a physical modeling space to produce an enhanced digital representation in real time. The result is a proof-of-concept concurrent physical and digital modeling environment where users can design by moving and stacking wooden blocks in a physical space, which is represented (and enhanced) digitally as a “voxel space.” Crucially, the system combines design affordances specific to each media: while the physical space offers tactile and embodied forms of design interaction, the digital space offers different views and parametric editing capabilities —as well as save configuration, and the capacity to perform basic analyses. Following a short review of experimental computational and tangible interaction design interfaces, the thesis discusses the system's implementation, its limitations, and next steps.

Media Format

flash_audio

Share

COinS