Date of Original Version



Conference Proceeding

Abstract or Description

Recently, Linear Programming (LP)-based relaxations have been shown promising in boosting the performance of exact MAX-SAT solvers. We compare Semidefinite Programming (SDP) based relaxations with LP relaxations for MAX-2-SAT. We will show how SDP relaxations are surprisingly powerful, providing much tighter bounds than LP relaxations, across different constrainedness regions. SDP relaxations can also be computed very efficiently, thus quickly providing tight lower and upper bounds on the optimal solution. We also show the effectiveness of SDP relaxations in providing heuristic guidance for iterative variable setting, significantly more accurate than the guidance based on LP relaxations. SDP allows us to set up to around 80% of the variables without degrading the optimal solution, while setting a single variable based on the LP relaxation generally degrades the global optimal solution in the overconstrained area. Our results therefore show that SDP relaxations may further boost exact MAX-SAT solvers.





Published In

J.C. Beck and B.M. Smith (Eds.): CPAIOR 2006, LNCS 3990, 104-118.