Date of Original Version

10-1997

Type

Conference Proceeding

Rights Management

©1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Abstract or Description

This paper presents an algorithm for finding parallel elimination orders for Gaussian elimination. Viewing a system of equations as a graph, the algorithm can be applied directly to interval graphs and chordal graphs. For general graphs, the algorithm can be used to parallelize the order produced by some other heuristic such as minimum degree. In this case, the algorithm is applied to the chordal completion that the heuristic generates from the input graph. In general, the input to the algorithm is a chordal graph G with n nodes and m edges. The algorithm produces an order with height at most O(log3 n) times optimal, fill at most O(m), and work at most O(W*(G)), where W*(G) is the minimum possible work over all elimination orders for G. Experimental results show that when applied after some other heuristic, the increase in work and fill is usually small. In some instances the algorithm obtains an order that is actually better, in terms of work and fill, than the original one. We also present an algorithm that produces an order with a factor of log n less height, but with a factor of O(√log n) more fill

DOI

10.1109/SFCS.1997.646116

Share

COinS
 

Published In

38th Annual Symposium on Foundations of Computer Science, Proceedings, 274-283.