Date of Original Version



Conference Proceeding

Abstract or Description

In this paper, we study the minimum degree minimum spanning tree problem: Given a graph G = (V,E) and a non-negative cost function c on the edges, the objective is to find a minimum cost spanning tree T under the cost function c such that the maximum degree of any node in T is minimized. We obtain an algorithm which returns an MST of maximum degree at most Δ*+k where Δ* is the minimum maximum degree of any MST and k is the distinct number of costs in any MST of G. We use a lower bound given by a linear programming relaxation to the problem and strengthen known graph-theoretic results on minimum degree subgraphs [3,5] to prove our result. Previous results for the problem [1,4] used a combinatorial lower bound which is weaker than the LP bound we use.





Published In

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, 169-180.