Date of Original Version

July 2011



Abstract or Description

Compiling Bayesian networks (BNs) to junction trees and performing belief propagation over them is among the most prominent approaches to computing posteriors in BNs. However, belief propagation over junction tree is known to be computationally intensive in the general case. Its complexity may increase dramatically with the connectivity and state space cardinality of Bayesian network nodes. In this paper, we address this computational challenge using GPU parallelization. We develop data structures and algorithms that extend existing junction tree techniques, and specifically develop a novel approach to computing each belief propagation message in parallel. We implement our approach on an NVIDIA GPU and test it using BNs from several applications. Experimentally, we study how junction tree parameters affect parallelization opportunities and hence the performance of our algorithm. We achieve speedups ranging from 0.68 to 9.18 for the BNs studied.



Published In

Proc. of the 27th Conference on Uncertainty in Artificial Intelligence (UAI-11).


To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.