Date of Original Version




Published In

Artificial Intelligence 172 (2008) 955–990

Abstract or Table of Contents

Stochastic local search (SLS) algorithms have recently been proven to be among the best approaches to solving computationally hard problems. SLS algorithms typically have a number of parameters, optimized empirically, that characterize and determine their performance. In this article, we focus on the noise parameter. The theoretical foundation of SLS, including an understanding of how to the optimal noise varies with problem difficulty, is lagging compared to the strong empirical results obtained using these algorithms. A purely empirical approach to understanding and optimizing SLS noise, as problem instances vary, can be very computationally intensive. To complement existing experimental results, we formulate and analyze several Markov chain models of SLS in this article. In particular, we compute expected hitting times and show that they are rational functions for individual problem instances as well as their mixtures. Expected hitting time curves are analytical counterparts to noise response curves reported in the experimental literature. Hitting time analysis using polynomials and convex functions is also discussed. In addition, we present examples and experimental results illustrating the impact of varying noise probability on SLS run time. In experiments, where most probable explanations in Bayesian networks are computed, we use synthetic problem instances as well as problem instances from applications. We believe that our results provide an improved theoretical understanding of the role of noise in stochastic local search, thereby providing a foundation for further progress in this area.


To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.