Date of Original Version

1-1-2008

Type

Article

Abstract or Description

Electrical power systems play a critical role in spacecraft and aircraft. This paper discusses our development of a diagnostic capability for an electrical power system testbed, ADAPT, using probalistic techniques. In the context of ADAPT, we present two challenges, regarding modelling and real-time performance, often encountered in real-world diagnostic applications. To meet the modelling challenge, we discuss our novel high-level specification language which supports auto-generation of Bayesian networks. To meet the real-time challenge, we compile Bayesian networks intro arithmetic circuits. Arithmetic circuits typically have small footprints and are optimized for the real-time avionics systems found in spacecraft and aircraft. Using our approach, we present how Bayesian networks with over 400 nodes are auto-generated and then compiled into arithmetic circuits. Using real-time world data from ADAPT as well as simulated data, we obtain average inference times smaller than one millisecond when computing diagnostic queries using arithmetic circuits that model our real world electrical power system.

Comments

Copyright 2008. Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.