Date of Original Version

August 2012



Abstract or Description

This paper investigates the challenge of integrating intelligent systems into varying computational platforms and application mixes while providing reactive (or soft real-time) response. We integrate Bayesian network computation with feedback control, thereby achieving our reactive objective. As a case study we investigate fault diagnosis using Bayesian networks. While we consider the likelihood weighting and junction tree propagation Bayesian network inference algorithms in some detail, we hypothesize that the techniques developed can be broadly applied to achieve reactive intelligent systems. In the empirical study of this paper we demonstrate reactive fault diagnosis for an electrical power system.



Published In

Proc. of the 9th Bayesian Modelling Applications Workshop.


To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.