Date of Original Version



Conference Proceeding

Abstract or Description

Reconstructing an arbitrary configuration of 3D points from their projection in an image is an ill-posed problem. When the points hold semantic meaning, such as anatomical landmarks on a body, human observers can often infer a plausible 3D configuration, drawing on extensive visual memory. We present an activity-independent method to recover the 3D configuration of a human figure from 2D locations of anatomical landmarks in a single image, leveraging a large motion capture corpus as a proxy for visual memory. Our method solves for anthropometrically regular body pose and explicitly estimates the camera via a matching pursuit algorithm operating on the image projections. Anthropometric regularity (i.e., that limbs obey known proportions) is a highly informative prior, but directly applying such constraints is intractable. Instead, we enforce a necessary condition on the sum of squared limb-lengths that can be solved for in closed form to discourage implausible configurations in 3D. We evaluate performance on a wide variety of human poses captured from different viewpoints and show generalization to novel 3D configurations and robustness to missing data.



Included in

Robotics Commons



Published In

Computer Vision – ECCV 2012: 12th European Conference on Computer Vision, LNCS 7575, 573-586.