Date of Original Version



Conference Proceeding

Abstract or Description

Currently deployed unmanned rotorcraft rely on carefully preplanned missions and operate from prepared sites and thus avoid the need to perceive and react to the environment. Here we consider the problems of finding suitable but previously unmapped landing sites given general coordinates of the goal and planning collision free trajectories in real time to land at the “optimal” site. This requires accurate mapping, fast landing zone evaluation algorithms, and motion planning. We report here on the sensing, perception and motion planning integrated onto a full-scale helicopter that flies completely autonomously. We show results from 8 experiments for landing site selection and 5 runs at obstacles. These experiments have demonstrated the first autonomous full-scale helicopter that successfully selects its own landing sites and avoids obstacles.



Included in

Robotics Commons



Published In

2012 IEEE International Conference on Robotics and Automation (ICRA), 951-956.