Date of Original Version

5-2010

Type

Conference Proceeding

Abstract or Description

We present a novel approach to legged locomotion over rough terrain that is thoroughly rooted in optimization. This approach relies on a hierarchy of fast, anytime algorithms to plan a set of footholds, along with the dynamic body motions required to execute them. Components within the planning framework coordinate to exchange plans, cost-to-go estimates, and “certificates” that ensure the output of an abstract high-level planner can be realized by deeper layers of the hierarchy. The burden of careful engineering of cost functions to achieve desired performance is substantially mitigated by a simple inverse optimal control technique. Robustness is achieved by real-time re-planning of the full trajectory, augmented by reflexes and feedback control. We demonstrate the successful application of our approach in guiding the LittleDog quadruped robot over a variety of rough terrains.

DOI

10.1109/ROBOT.2010.5509176

Included in

Robotics Commons

Share

COinS