Date of Original Version

2003

Type

Technical Report

Rights Management

All Rights Reserved

Abstract or Description

Abstract: "This paper presents a method for evaluating multiple feature spaces while tracking, and for adjusting the set of features used to improve tracking performance. Our hypothesis is that the features that best discriminate between object and background are also best for tracking the object. We develop an on-line feature ranking mechanism based on the two-class variance ratio measure, applied to log likelihood values computed from empirical distributions of object and background pixels with respect to a given feature. This feature ranking mechanism is embedded in a tracking system that adaptively selects the top-ranked discriminative features for tracking. Examples are presented to illustrate how the method adapts to changing appearances of both tracked object and scene background."

Included in

Robotics Commons

Share

COinS