Date of Original Version



Conference Proceeding

Abstract or Description

Dealing with uncertainty in Bayesian Net- work structures using maximum a posteriori (MAP) estimation or Bayesian Model Averaging (BMA) is often intractable due to the superexponential number of possible directed, acyclic graphs. When the prior is decomposable, two classes of graphs where efficient learning can take place are tree- structures, and fixed-orderings with limited in-degree. We show how MAP estimates and BMA for selectively conditioned forests (SCF), a combination of these two classes, can be computed efficiently for ordered sets of variables. We apply SCFs to temporal data to learn Dynamic Bayesian Networks having an intra-timestep forest and inter-timestep limited in-degree structure, improving model accuracy over DBNs without the combination of structures. We also apply SCFs to Bayes Net classification to learn selective forest- augmented Na¨ıve Bayes classifiers. We argue that the built-in feature selection of selective augmented Bayes classifiers makes them preferable to similar non-selective classifiers based on empirical evidence.

Included in

Robotics Commons