Date of Original Version

2001

Type

Conference Proceeding

Abstract or Description

Color is a useful feature for machine vision tasks. However, its effectiveness is often limited by the fact that the measured pixel values in a scene are influenced by both object surface reflectance properties and incident illumination. Color constancy algorithms attempt to compute color features which are invariant of the incident illumination by estimating the parameters of the global scene illumination and factoring out its effect. A number of recently developed algorithms utilize statistical methods to estimate the maximum likelihood values of the illumination parameters. This paper details the use of KL-divergence as a means of selecting estimated illumination parameter values. We provide experimental results demonstrating the usefulness of the KL-divergence technique for accurately estimating

Comments

"©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Included in

Robotics Commons

Share

COinS
 

Published In

Proceedings of the Eighth IEEE International Conference on Computer Vision (ICCV '01), 239-246.