Date of Original Version



Conference Proceeding

Abstract or Description

The optimal distance measure for a given discrimination task under the nearest neighbor framework has been shown to be the likelihood that a pair of measurements have different class labels [S. Mahamud et al., (2002)]. For implementation and efficiency considerations, the optimal distance measure was approximated by combining more elementary distance measures defined on simple feature spaces. We address two important issues that arise in practice for such an approach: (a) What form should the elementary distance measure in each feature space take? We motivate the need to use the optimal distance measure in simple feature spaces as the elementary distance measures; such distance measures have the desirable property that they are invariant to distance-respecting transformations, (b) How do we combine the elementary distance measures ? We present the precise statistical assumptions under which a linear logistic model holds exactly. We benchmark our model with three other methods on a challenging face discrimination task and show that our approach is competitive with the state of the art.


"©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Included in

Robotics Commons



Published In

IEEE International Conference on Computer Vision (ICCV).