Date of Original Version

2002

Type

Conference Proceeding

Abstract or Description

We propose to combine simple discriminators for object discrimination under the maximum entropy framework or equivalently under the maximum likelihood framework for the exponential family. The duality between the maximum entropy framework and maximum likelihood framework allows us to relate two selection criteria for the discriminators that were proposed in the literature. We illustrate our approach by combining nearest prototype discriminators that are simple to implement and widely applicable as they can be constructed in any feature space with a distance function. For efficient run-time performance we adapt the work on “alternating trees” for multi-class discrimination tasks. We report results on a multi-class discrimination task in which significant gains in performance are seen by combining discriminators under our framework from a variety of easy to construct feature spaces.

Comments

The original publication is available at www.springerlink.com

Included in

Robotics Commons

Share

COinS
 

Published In

European Conf. on Computer Vision (ECCV).