Date of Original Version

1999

Type

Conference Proceeding

Abstract or Description

Many modeling tasks in computer vision, e.g. structure from motion, shape/reflectance from shading, filter synthesis have a low-dimensional intrinsic structure even though the dimension of the input data can be relatively large. We propose a simple but surprisingly effective iterative randomized algorithm that drastically cuts down the time required for recovering the intrinsic structure. The computational cost depends only on the intrinsic dimension of the structure of the task. It is based on the recently proposed Cascade Basis Reduction (CBR) algorithm that was developed in the context of steerable filters. A key feature of our algorithm compared with CBR is that an arbitrary a priori basis for the task is not required. This allows us to extend the applicability of the algorithm to tasks beyond steerable filters such as structure from motion. We prove the convergence for the new algorithm. In practice the new algorithm is much faster than CBR for the same modeling error. We demonstrate this speed-up for the construction of a steerable basis for Gabor filters. We also demonstrate the generality of the new algorithm by applying it to to an example from structure from motion without missing data

Comments

"©1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Included in

Robotics Commons

Share

COinS
 

Published In

IEEE International Conference on Computer Vision (ICCV).