Date of Original Version

2004

Type

Conference Proceeding

Abstract or Description

This paper presents a parts-based method for classifying scenes of 3D objects into a set of pre-determined object classes. Working at the part level, as opposed to the whole object level, enables a more flexible class representation and allows scenes in which the query object is significantly occluded to be classified. In our approach, parts are extracted from training objects and grouped into part classes using a hierarchical clustering algorithm. Each part class is represented as a collection of semi-local shape features and can be used to perform pan class recognition. A mapping from part classes to object classes is derived from the learned part classes and known object classes. At run-time, a 3D query scene is sampled, local shape features are computed, and the object class is determined using the learned pan classes and the pan-to-object mapping. Classifying novel 3D scenes of vehicles into eight classes demonstrate the approach.

Comments

"©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Included in

Robotics Commons

Share

COinS
 

Published In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 04).