Date of Original Version



Conference Proceeding

Abstract or Description

This paper proposes a joint feature-based model indexing and geometric constraint based alignment pipeline for efficient and accurate recognition of 3D objects from a large model database. Traditional approaches either first prune the model database using indexing without geometric alignment or directly perform recognition based alignment. The indexing based pruning methods without geometric constraints can miss the correct models under imperfections such as noise, clutter and obscurations. Alignment based verification methods have to linearly verify each model in the database and hence do not scale up. The proposed techniques use spin images as semi-local shape descriptors and locality-sensitive hashing (LSH) to index into a joint spin image database for all the models. The indexed models represented in the pruned set are further pruned using progressively complex geometric constraints. A simple geometric configuration of multiple spin images, for instance a doublet, is first used to check for geometric consistency. Subsequently, full Euclidean geometric constraints are applied using RANSAC-based techniques on the pruned spin images and the models to verify specific object identity. As a result, the combined indexing and geometric alignment based pipeline is able to focus on matching the most promising models, and generate far less pose hypotheses while maintaining the same level of performance as the sequential alignment based recognition. Furthermore, compared to geometric indexing techniques like geometric hashing, the construction time and storage complexity for the proposed technique remains linear in the number of features rather than higher order polynomial. Experiments on a 56 3D model database show promising results.


"©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Included in

Robotics Commons



Published In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2004).