Date of Original Version

2004

Type

Conference Proceeding

Abstract or Description

We describe an approach that integrate midrange sensing into a dynamic path planning algorithm1. The algorithm is based on measuring the reduction in path cost that would be caused by taking a sensor reading from candidate locations. The planner uses this measure in order to decide where to take the next sensor reading. Ideally, one would like to evaluate a path based on a map that is as close as possible to the true underlying world. In practice, however, the map is only sparsely populated by data derived from sensor readings. A key component of the approach described in this paper is a mechanism to infer (or ”hallucinate”) more complete maps from sparse sensor readings. We show how this hallucination mechanism is integrated with the planner to produce better estimates of the gain in path cost occurred when taking sensor readings. We show results on a real robot as well as a statistical analysis on a large set of randomly generated path planning problems on elevation maps from real terrain.

Comments

"©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Included in

Robotics Commons

Share

COinS