Date of Original Version

2005

Type

Conference Proceeding

Abstract or Description

We present a two-layer hierarchical formulation to exploit different levels of contextual information in images for robust classification. Each layer is modeled as a conditional field that allows one to capture arbitrary observationdependent label interactions. The proposed framework has two main advantages. First, it encodes both the short-range interactions (e.g., pixelwise label smoothing) as well as the long-range interactions (e.g., relative configurations of objects or regions) in a tractable manner. Second, the formulation is general enough to be applied to different domains ranging from pixelwise image labeling to contextual object detection. The parameters of the model are learned using a sequential maximum-likelihood approximation. The benefits of the proposed framework are demonstrated on four different datasets and comparison results are presented.

Comments

"©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Included in

Robotics Commons

Share

COinS