Date of Original Version

2007

Type

Conference Proceeding

Abstract or Description

While great strides have been made in detecting and localizing specific objects in natural images, the bottom-up segmentation of unknown, generic objects remains a difficult challenge. We believe that occlusion can provide a strong cue for object segmentation and “pop-out”, but detecting an object’s occlusion boundaries using appearance alone is a difficult problem in itself. If the camera or the scene is moving, however, that motion provides an additional powerful indicator of occlusion. Thus, we use standard appearance cues (e.g. brightness/color gradient) in addition to motion cues that capture subtle differences in the relative surface motion (i.e. parallax) on either side of an occlusion boundary. We describe a learned local classifier and global inference approach which provide a framework for combining and reasoning about these appearance and motion cues to estimate which region boundaries of an initial over-segmentation correspond to object/occlusion boundaries in the scene. Through results on a dataset which contains short videos with labeled boundaries, we demonstrate the effectiveness of motion cues for this task.

Comments

"©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Included in

Robotics Commons

Share

COinS
 

Published In

IEEE International Conference on Computer Vision (ICCV).