Date of Original Version

2009

Type

Conference Proceeding

Abstract or Description

Temporal segmentation of human motion into actions is central to the understanding and building of computational models of human motion and activity recognition. Several issues contribute to the challenge of temporal segmentation and classification of human motion. These include the large variability in the temporal scale and periodicity of human actions, the complexity of representing articulated motion, and the exponential nature of all possible movement combinations. We provide initial results from investigating two distinct problems - classification of the overall task being performed, and the more difficult problem of classifying individual frames over time into specific actions. We explore first-person sensing through a wearable camera and Inertial Measurement Units (IMUs) for temporally segmenting human motion into actions and performing activity classification in the context of cooking and recipe preparation in a natural environment. We present baseline results for supervised and unsupervised temporal segmentation, and recipe recognition in the CMU-Multimodal activity database (CMU-MMAC).

Comments

"©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Included in

Robotics Commons

Share

COinS
 

Published In

IEEE Workshop on Egocentric Vision, CVPR 2009.