Date of Original Version



Conference Proceeding

Abstract or Description

In order to efficiently design complex microelectromechanical systems (MEMS) having large numbers of multi-domain components, a hierarchically structured design approach that is compatible with standard IC design is needed. A graphical-based schematic, or structural, view is presented as a geometrically intuitive way to represent MEMS as a set of interconnected lumpedparameter elements. An initial library focuses on suspended- MEMS technology from which inertial sensors and other mechanical mechanisms can be designed. The schematic representation has a simulation interface enabling the designer to simulate the design at the component level. Synthesis of MEMS cells for common topologies provides the system designer with rapid, optimized component layout and associated macro-models. A synthesis module is developed for the popular folded-flexure micromechanical resonator topology. The algorithm minimizes a combination of total layout area and voltage applied to the electromechanical actuators. Synthesis results clearly show the design limits of behavioral parameters such as resonant frequency for a fixed process technology


Copyright © 1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or © ACM, 1997. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the Proceedings of the 34th annual Design Automation Conference {0-89791-920-3 (1997)}

Included in

Robotics Commons



Published In

Proceedings of 34th Design Automation Conference, 680-685.