Date of Original Version

2005

Type

Conference Proceeding

Abstract or Description

Many computer vision algorithms limit their performance by ignoring the underlying 3D geometric structure in the image. We show that we can estimate the coarse geometric properties of a scene by learning appearance-based models of geometric classes, even in cluttered natural scenes. Geometric classes describe the 3D orientation of an image region with respect to the camera. We provide a multiple-hypothesis framework for robustly estimating scene structure from a single image and obtaining confidences for each geometric label. These confidences can then be used to improve the performance of many other applications. We provide a thorough quantitative evaluation of our algorithm on a set of outdoor images and demonstrate its usefulness in two applications: object detection and automatic single-view reconstruction.

Comments

"©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Included in

Robotics Commons

Share

COinS