Date of Original Version

2005

Type

Conference Proceeding

Published In

Proceedings of the International Conference on Intelligent Robots and Systems (IROS '05), 2005

Rights Management

Digital Object Identifier: 10.1109/IROS.2005.1545118

Abstract or Table of Contents

Occupancy grid mapping algorithms assume that grid block values are independently distributed. However, most environments of interest contain spatial patterns that are better characterized by models that capture dependencies among grid blocks. To account for such dependencies, we model the environment as a pairwise Markov random field. We specify a belief propagation-based mapping algorithm that takes these dependencies into account when estimating a map. To demonstrate the potential benefits of this approach, we simulate a simple multirobot minefield mapping scenario. Minefields contain spatial dependencies since some landmine configurations are more likely than others, and since clutter, which causes false alarms, can be concentrated in certain regions and completely absent in others. Our belief propagation-based approach outperforms conventional occupancy grid mapping algorithms in the sense that better maps can be obtained with significantly fewer robot measurements. The belief propagation algorithm requires a modest amount of increased computation, but we contend that in applications where significant energy and time expenditure is associated with robot movement and active sensing, the reduction in the required number of samples will justify the increased computation.

Comments

"©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Included in

Robotics Commons

Share

COinS