Date of Original Version

2008

Type

Conference Proceeding

Abstract or Description

Temporal segmentation of human motion into actions is a crucial step for understanding and building computational models of human motion. Several issues contribute to the challenge of this task. These include the large variability in the temporal scale and periodicity of human actions, as well as the exponential nature of all possible movement combinations. We formulate the temporal segmentation problem as an extension of standard clustering algorithms. In particular, this paper proposes Aligned Cluster Analysis (ACA), a robust method to temporally segment streams of motion capture data into actions. ACA extends standard kernel k- means clustering in two ways: (1) the cluster means contain a variable number of features, and (2) a dynamic time warping (DTW) kernel is used to achieve temporal invariance. Experimental results, reported on synthetic data and the Carnegie Mellon Motion Capture database, demonstrate its effectiveness.

Comments

"©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Included in

Robotics Commons

Share

COinS