Date of Original Version



Conference Proceeding

Rights Management

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

Automatic facial action unit (AFA) detection from video is a long-standing problem in facial expression analysis. Most approaches emphasize choices of features and classifiers. They neglect individual differences in target persons. People vary markedly in facial morphology (e.g., heavy versus delicate brows, smooth versus deeply etched wrinkles) and behavior. Individual differences can dramatically influence how well generic classifiers generalize to previously unseen persons. While a possible solution would be to train person-specific classifiers, that often is neither feasible nor theoretically compelling. The alternative that we propose is to personalize a generic classifier in an unsupervised manner (no additional labels for the test subjects are required). We introduce a transductive learning method, which we refer to Selective Transfer Machine (STM), to personalize a generic classifier by attenuating person-specific biases. STM achieves this effect by simultaneously learning a classifier and re-weighting the training samples that are most relevant to the test subject. To evaluate the effectiveness of STM, we compared STM to generic classifiers and to cross-domain learning methods in three major databases: CK+ [20], GEMEP-FERA [32] and RU-FACS [2]. STM outperformed generic classifiers in all.



Included in

Robotics Commons



Published In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, 3515-3522.