Date of Original Version

5-2013

Type

Conference Proceeding

Rights Management

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

We propose a method to learn the partiallyordered structure inherent in human everyday activities from observations by exploiting variability in the data. Using statistical relational learning, the system extracts a full-joint probability distribution over the actions that form a task, their (partial) ordering, and their parameters. Relevant action properties and relations among actions are learned as those that are consistent among the observations. The models can be used for classifying action sequences, but also for determining which actions are relevant for a task, which objects are usually manipulated, or which action parameters are typical for a person. We evaluate the approach on synthetic data sampled from partial-order trees as well as two real-world data sets of humans activities: the TUM kitchen data set and the CMU MMAC data set. The results show that our approach outperforms sequence-based models like Conditional Random Fields for activities that allow a large degree of variation.

DOI

10.1109/ICRA.2013.6631222

Included in

Robotics Commons

Share

COinS
 

Published In

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2013, 4359-4544.