Date of Original Version

6-2014

Type

Conference Proceeding

Rights Management

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

The task of estimating complex non-rigid 3D motion through a monocular camera is of increasing interest to the wider scientific community. Assuming one has the 2D point tracks of the non-rigid object in question, the vision community refers to this problem as Non-Rigid Structure from Motion (NRSfM). In this paper we make two contributions. First, we demonstrate empirically that the current state of the art approach to NRSfM (i.e. Dai et al. [5]) exhibits poor reconstruction performance on complex motion(i.e motions involving a sequence of primitive actions such as walk, sit and stand involving a human object). Second, we propose that this limitation can be circumvented by modeling complex motion as aunion of subspaces. This does not naturally occur in Dai et al.'s approach which instead makes a less compact summation of subspaces assumption. Experiments on both synthetic and real videos illustrate the benefits of our approach for the complex nonrigid motion analysis.

DOI

10.1109/CVPR.2014.200

Included in

Robotics Commons

Share

COinS
 

Published In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, 1542-1549.