Date of Original Version



Conference Proceeding

Rights Management

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

Visual place recognition and loop closure is critical for the global accuracy of visual Simultaneous Localization and Mapping (SLAM) systems. We present a place recognition algorithm which operates by matching local query image sequences to a database of image sequences. To match sequences, we calculate a matrix of low-resolution, contrast-enhanced image similarity probability values. The optimal sequence alignment, which can be viewed as a discontinuous path through the matrix, is found using a Hidden Markov Model (HMM) framework reminiscent of Dynamic Time Warping from speech recognition. The state transitions enforce local velocity constraints and the most likely path sequence is recovered efficiently using the Viterbi algorithm. A rank reduction on the similarity probability matrix is used to provide additional robustness in challenging conditions when scoring sequence matches. We evaluate our approach on seven outdoor vision datasets and show improved precision-recall performance against the recently published seqSLAM algorithm.



Included in

Robotics Commons



Published In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2014, 4549-4555.