Date of Original Version

8-6-2014

Type

Article

Rights Management

©2014 American Physical Society

Abstract or Description

Motivated by interest in the elastic properties of high-strength amorphous metals, we examine the elastic properties of select crystalline phases. Using first-principles methods, we calculate elastic moduli in various chemical systems containing transition metals, specifically early (Ta,W) and late (Co,Ni). Theoretically predicted alloy elastic properties are verified for Ni-Ta by comparison with experimental measurements using resonant ultrasound spectroscopy. Comparison of our computed elastic moduli with effective medium theories shows that alloying leads to enhancement of bulk moduli relative to averages of the pure elements and considerable deviation of predicted and computed shear moduli. Specifically, we find an enhancement of bulk modulus relative to effective medium theory and propose a candidate system for high-strength, ductile amorphous alloys. Trends in the elastic properties of chemical systems are analyzed using force constants, electronic densities of state, and crystal overlap Hamilton populations. We interpret our findings in terms of the electronic structure of the alloys.

DOI

http://dx.doi.org/10.1103/PhysRevB.89.104103

Included in

Physics Commons

Share

COinS
 

Published In

Physical Review B, 89, 104103.