Date of Original Version

8-1-2014

Type

Article

PubMed ID

25053840

Rights Management

© The Author(s) 2014. Published by Oxford University Press

Abstract or Description

Herpes simplex type 1 virus (HSV-1) and bacteriophage λ capsids undergo considerable structural changes during self-assembly and DNA packaging. The initial steps of viral capsid self-assembly require weak, non-covalent interactions between the capsid subunits to ensure free energy minimization and error-free assembly. In the final stages of DNA packaging, however, the internal genome pressure dramatically increases, requiring significant capsid strength to withstand high internal genome pressures of tens of atmospheres. Our data reveal that the loosely formed capsid structure is reinforced post-assembly by the minor capsid protein UL25 in HSV-1 and gpD in bacteriophage λ. Using atomic force microscopy nano-indentation analysis, we show that the capsid becomes stiffer upon binding of UL25 and gpD due to increased structural stability. At the same time the force required to break the capsid increases by ∼70% for both herpes and phage. This demonstrates a universal and evolutionarily conserved function of the minor capsid protein: facilitating the retention of the pressurized viral genome in the capsid. Since all eight human herpesviruses have UL25 orthologs, this discovery offers new opportunities to interfere with herpes replication by disrupting the precise force balance between the encapsidated DNA and the capsid proteins crucial for viral replication.

DOI

10.1093/nar/gku634

Creative Commons


This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Physics Commons

Share

COinS
 

Published In

Nucleic acids research, 42, 14, 9096-9107.