Date of Original Version

7-2010

Type

Conference Proceeding

Rights Management

Copyright AUAI Press

Abstract or Description

Over the past two decades, several consistent procedures have been designed to infer causal conclusions from observational data. We prove that if the true causal network might be an arbitrary, linear Gaussian network or a discrete Bayes network, then every unambiguous causal conclusion produced by a consistent method from non-experimental data is subject to reversal as the sample size increases any finite number of times. That result, called the causal flipping theorem, extends prior results to the effect that causal discovery cannot be reliable on a given sample size. We argue that since repeated flipping of causal conclusions is unavoidable in principle for consistent methods, the best possible discovery methods are consistent methods that retract their earlier conclusions no more than necessary. A series of simulations of various methods across a wide range of sample sizes illustrates concretely both the theorem and the principle of comparing methods in terms of retractions.

Included in

Philosophy Commons

Share

COinS
 

Published In

Proceedings of the Conference on Uncertainly in Artificial Intelligence (UAI), 2010, 277-285.