Date of Original Version

8-2010

Type

Article

Abstract or Description

The philosophy of mathematics has long been concerned with determining the means that are appropriate for justifying claims of mathematical knowledge, and the metaphysical considerations that render them so. But, as of late, many philosophers have called attention to the fact that a much broader range of normative judgments arise in ordinary mathematical practice; for example, questions can be interesting, theorems important, proofs explanatory, concepts powerful, and so on. The associated values are often loosely classified as aspects of “mathematical understanding.”

Meanwhile, in a branch of computer science known as “formal verification,” the practice of interactive theorem proving has given rise to software tools and systems designed to support the development of complex formal axiomatic proofs. Such efforts require one to develop models of mathematical language and inference that are more robust than the the simple foundational models of the last century. This essay explores some of the insights that emerge from this work, and some of the ways that these insights can inform, and be informed by, philosophical theories of mathematical understanding.

Share

COinS
 

Published In

Journal of the Indian Council of Philosophical Research, 27, 161-197.