Date of Original Version

2009

Type

Article

Published In

Annals of Pure and Applied Logic 157 (2-3), February 2009: 64-76.

Rights Management

All Rights Reserved

Abstract or Description

The metamathematical tradition, tracing back to Hilbert, employs syntactic modeling to study the methods of contemporary mathematics. A central goal has been, in particular, to explore the extent to which infinitary methods can be understood in computational or otherwise explicit terms. Ergodic theory provides rich opportunities for such analysis. Although the field has its origins in seventeenth century dynamics and nineteenth century statistical mechanics, it employs infinitary, nonconstructive, and structural methods that are characteristically modern. At the same time, computational concerns and recent applications to combinatorics and number theory force us to reconsider the constructive character of the theory and its methods. This paper surveys some recent contributions to the metamathematical study of ergodic theory, focusing on the mean and pointwise ergodic theorems and the Furstenberg structure theorem for measure preserving systems. In particular, I characterize the extent to which these theorems are nonconstructive, and explain how proof-theoretic methods can be used to locate their "constructive content."

DOI

10.1016/j.apal.2008.09.001

Included in

Philosophy Commons

Share

COinS