Date of Original Version




Rights Management

Copyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article may be found at

Abstract or Description

Composition dependence of resistivity is studied in amorphous (Fe100−xCox)89−yZr7B4Cuy (0 ≤ x ≤ 50, y = 0, 1) alloys. The two-current model proposed by Mott for crystalline materials is extended to a disordered amorphous system where s-d scattering is dominant in electron conduction. A rigid-band assumption is made due to the small atomic number difference between Fe and Co. Band structures with a constant density of states (DOS), parabolic distributed DOS, and Gaussian distributed DOS were investigated to fit experimental data. The Gaussian distributed DOS was found to simulate the resistivity maximum and magnetic moment maximum in the Fe-rich region. The basic concepts presented here can potentially provide insight into the optimization of FeCo-based HITPERM alloys for applications at increased frequencies.




Published In

Journal of Applied Physics, 112, 10, 103705.