Date of Original Version




Rights Management

Copyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article may be found at

Abstract or Description

Here, secondary crystallization kinetics of high induction, low loss HTX002-type nanocompositealloys with the compositions (Fe65Co35)79.5+xB13Nb4−xSi2Cu1.5 (x = 0-4) and (Fe65Co35)83B10Nb4Si2Cu1 are reported. The magnetization of the alloys was measured through the thermal cycle of 50 °C-700 °C-300 °C-800 °C-300 °C-900 °C-200 °C by vibrating sample magnetometry. In (Fe65Co35)79.5+xB13Nb4−xSi2Cu1.5alloys, the stability of the (Fe,Co,Nb)23B6 (23-6) phase is increased with increasing Nb content. In the x = 4 alloy, (Fe,Nb)2B is the only secondary crystalline phase to form, demonstrating that Nb is necessary for the 23-6 phase to form. The (Fe65Co35)83B10Nb4Si2Cu1alloy forms the 23-6 phase more readily than the x = 0 alloy, likely due to the lower B content. The kinetics of secondary crystallization are important to assess long-term ageing effects on the metastable microstructure at elevated temperatures.




Published In

Journal of Applied Physics, 111, 7, 07A329.