Date of Original Version

4-2011

Type

Article

Rights Management

Copyright 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article may be found at http://dx.doi.org/10.1063/1.3536672.

Abstract or Description

Thin film alternating gradient field magnetometers (AGFM) have potential for measuringmagnetic moments of minerals in extraterrestrial soil samples. AGFM sensors offer increased spatial resolution required to detect magnetic nanoparticles for biosensing applications. We have fabricated a patterned thin film with the properties necessary for use in a small AGFM system. Hexagonal-close-packed CoCrPt thin films of 20 and 500 nm were sputtered (nominal composition of Co66Cr15Pt19), showing a high magnetic moment and large out-of-plane anisotropy. The films showed a Δθ50 of better than 3° for the (002) CoCrPt peak for all films, which improves with thickness. The texture is partly due to the NiW and Ru underlayers. The films showed an out-of-plane easy axis, indicating a strong uniaxial anisotropy that exceeds the shape demagnetization energy. This is due to the addition of Cr, which decreases the magnetic moment of the films; magnetoelastic coupling and film stresses may also aid in achieving a perpendicular anisotropy. The first-order uniaxial anisotropy constants were calculated as a function of temperature, ranging from 3.7 × 106 ergs/cm3 at room temperature to 6.8 × 105 ergs/cm3 at 500 °C, and the T dependence agrees with Akulov’s theory for uniaxial materials. The thickest film was etched with a checkerboard pattern to decrease the demagnetization effects, which are seen more influentially in the thicker films. This opened up the hysteresis loop, and decreased the amount of field necessary to overcome the thin film geometry.

DOI

http://dx.doi.org/10.1063/1.3536672

Share

COinS
 

Published In

Journal of Applied Physics, 109, 7, 07E512.