Title

Porous Media Modeling of Microchannel Cooled Electronic Chips with Nonuniform Heating

Date of Original Version

Fall 2015

Type

Article

Abstract or Description

Microchannels are used for the cooling of electronic chips. However, the three-dimensional computational fluid dynamics modeling of the large number of channels in a full chip requires a huge number of meshes and computation time. Although porous media modeling of microchannels can significantly reduce the effort of simulation, most previous porous media models are based upon the assumption that the surface heat flux or temperature is uniform on the chip. In reality, the heat flux on the chip is usually highly nonuniform. In the present study, the porous media model considers the simultaneously developing entrance effect at the microchannel inlet and the thermally developing entrance effect due to the severe heat flux variation along the channel. Duhamel’s integral is used to provide the Nusselt number distribution corresponding to the nonuniform heat flux distribution along the channel. The computing cost of this modeling method is only about 1% of the three-dimensional conjugate simulation. This porous media thermal modeling method is applied to model two full-scale electronic chips with realistic power distributions on the surfaces, and temperature maps are generated. The porous media thermal modeling offered by this study is an accurate and efficient alternative for modeling the electronic chips cooled by microchannels.

DOI

10.2514/1.T4509

 

Published In

Journal of Thermophysics and Heat Transfer, 29, 4, 695-704.