Date of Original Version

3-2013

Type

Article

Rights Management

©2013 American Physical Society

Abstract or Description

In the near field, radiative heat transfer can exceed the prediction from Planck's law by several orders of magnitude, when the interacting materials support surface polaritons in the infrared range. However, if the emitter and absorber are made from two different materials, which support surface polariton resonances at different frequencies, the mismatch between surface polariton resonance frequencies will drastically reduce near-field radiative heat transfer. Here, we present a broadband near-field thermal emitter/absorber based on hyperbolic metamaterials, which can significantly enhance near-field radiative heat transfer with infrared surface-polariton-resonance materials and maintain the monochromatic characteristic of heat transfer. Instead of using an effective medium approximation, we perform a direct numerical simulation to accurately investigate the heat transfer mechanisms of metamaterials based on the Wiener chaos expansion method.

DOI

http://dx.doi.org/10.1103/PhysRevB.87.115403

Share

COinS
 

Published In

Physical Review B, 87, 115403.