Date of Original Version

1-2009

Type

Article

Rights Management

This is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at http://dx.doi.org/10.1016/j.jfa.2009.10.016

Abstract or Description

We consider the geometry of the space of Borel measures endowed with a distance that is defined by generalizing the dynamical formulation of the Wasserstein distance to concave, nonlinear mobilities. We investigate the energy landscape of internal, potential, and interaction energies. For the internal energy, we give an explicit sufficient condition for geodesic convexity which generalizes the condition of McCann. We take an eulerian approach that does not require global information on the geodesics. As by-product, we obtain existence, stability, and contraction results for the semigroup obtained by solving the homogeneous Neumann boundary value problem for a nonlinear diffusion equation in a convex bounded domain. For the potential energy and the interaction energy, we present a nonrigorous argument indicating that they are not displacement semiconvex.

DOI

http://dx.doi.org/10.1016/j.jfa.2009.10.016

Included in

Mathematics Commons

Share

COinS
 

Published In

Journal of Functional Analysis, 258, 4, 1273-1309.