Date of Original Version

10-2010

Type

Article

Rights Management

Copyright © 2010 Society for Industrial and Applied Mathematics

Abstract or Description

Let Ω ⊂ Rn be a bounded domain, and for x ∈ Ω let τ(x) be the expected exit time from Ω of a diffusing particle starting at x and advected by an incompressible flow u. We are interested in the question which flows maximize ‖τ‖L∞(Ω), that is, they are most efficient in the creation of hotspots inside Ω. Surprisingly, among all simply connected domains in two dimensions, the discs are the only ones for which the zero flow u ≡ 0 maximizes ‖τ‖L∞(Ω). We also show that in any dimension, among all domains with a fixed volume and all incompressible flows on them, ‖τ‖L∞(Ω) is maximized by the zero flow on the ball.

DOI

10.1137/090776895

Included in

Mathematics Commons

Share

COinS
 

Published In

SIAM Journal on Mathematical Analysis, 42, 6, 2484-2498.