Date of Original Version

6-2011

Type

Article

Rights Management

This is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at http://dx.doi.org/10.1016/j.ipl.2011.06.001

Abstract or Description

We study the problem of constructing a (near) uniform random proper q-coloring of a simple k-uniform hypergraph with n vertices and maximum degree ∆. (Proper in that no edge is mono-colored and simple in that two edges have maximum intersection of size one). We show that if for some α < 1 we have ∆ ≥ n α and q ≥ ∆(1+α)/kα then Glauber dynamics will become close to uniform in O(n log n) time from a random (improper) start. Note that for k > 1 + α −1 we can take q = o(∆).

DOI

http://dx.doi.org/10.1016/j.ipl.2011.06.001

Included in

Mathematics Commons

Share

COinS
 

Published In

Information Processing Letters, 111, 17, 848-853.