Date of Original Version




Rights Management

This is the accepted version of the article which has been published in final form at

Abstract or Description

We consider several variants of the classical Cops and Robbers game. We treat the version where the robber can move R≥1 edges at a time, establishing a general upper bound of , where α = 1 + 1/R, thus generalizing the best known upper bound for the classical case R = 1 due to Lu and Peng, and Scott and Sudakov. We also show that in this case, the cop number of an n-vertex graph can be as large as n1 − 1/(R − 2) for finite R≥5, but linear in n if R is infinite. For R = 1, we study the directed graph version of the problem, and show that the cop number of any strongly connected digraph on n vertices is O(n(loglogn)2/logn). Our approach is based on expansion.



Included in

Mathematics Commons



Published In

Journal of Graph Theory, 69, 4, 383-402.