Date of Original Version

4-1-2014

Type

Article

Rights Management

Copyright the Authors

Abstract or Description

For a fixed graph H with t vertices, an H-factor of a graph G with n vertices, where t divides n, is a collection of vertex disjoint (not necessarily induced) copies of H in G covering all vertices of G. We prove that for a fixed tree T on t vertices and ϵ>0, the random graph Gn,p, with n a multiple of t, with high probability contains a family of edge-disjoint T-factors covering all but an ϵ-fraction of its edges, as long as ϵ4np≫log2n. Assuming stronger divisibility conditions, the edge probability can be taken down to p>Clognn. A similar packing result is proved also for pseudo-random graphs, defined in terms of their degrees and co-degrees.

Included in

Mathematics Commons

Share

COinS
 

Published In

Electronic Journal of Combinatorics, 21, 2, #P2.8.