Date of Original Version

6-2012

Type

Conference Proceeding

Rights Management

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract or Description

We introduce a new discriminative learning method for image classification. We assume that the images are represented by unordered, multi-dimensional, finite sets of feature vectors, and that these sets might have different cardinality. This allows us to use consistent nonparametric divergence estimators to define new kernels over these sets, and then apply them in kernel classifiers. Our numerical results demonstrate that in many cases this approach can outperform state-of-the-art competitors on both simulated and challenging real-world datasets.

DOI

10.1109/CVPR.2012.6248028

Share

COinS
 

Published In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2989-2996.