Date of Original Version

6-2013

Type

Conference Proceeding

Rights Management

Copyright 2013 by the author(s).

Abstract or Description

Many real world network problems often concern multivariate nodal attributes such as image, textual, and multi-view feature vectors on nodes, rather than simple univariate nodal attributes. The existing graph estimation methods built on Gaussian graphical models and covariance selection algorithms can not handle such data, neither can the theories developed around such methods be directly applied. In this paper, we propose a new principled framework for estimating multi-attribute graphs. Instead of estimating the partial correlation as in current literature, our method estimates the partial canonical correlations that naturally accommodate complex nodal features. Computationally, we provide an efficient algorithm which utilizes the multi-attribute structure. Theoretically, we provide sufficient conditions which guarantee consistent graph recovery. Extensive simulation studies demonstrate performance of our method under various conditions.

Share

COinS
 

Published In

Journal of Machine Learning Research : Workshop and Conference Proceedings, 28, 3, 73-81.