Date of Original Version

6-2013

Type

Conference Proceeding

Journal Title

Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

First Page

1206

Last Page

1216

Rights Management

Copyright 2013 The Association for Computational Linguistics

Abstract or Description

We present a morphology-aware nonparametric Bayesian model of language whose prior distribution uses manually constructed finitestate transducers to capture the word formation processes of particular languages. This relaxes the word independence assumption and enables sharing of statistical strength across, for example, stems or inflectional paradigms in different contexts. Our model can be used in virtually any scenario where multinomial distributions over words would be used. We obtain state-of-the-art results in language modeling, word alignment, and unsupervised morphological disambiguation for a variety of morphologically rich languages.

Share

COinS
 

Published In

Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1206-1216.