Date of Original Version

6-2010

Type

Conference Proceeding

Journal Title

Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

First Page

609

Last Page

617

Rights Management

Copyright 2010 ACL

Abstract or Description

We address the challenge of automatically generating questions from reading materials for educational practice and assessment. Our approach is to overgenerate questions, then rank them. We use manually written rules to perform a sequence of general purpose syntactic transformations (e.g., subject-auxiliary inversion) to turn declarative sentences into questions. These questions are then ranked by a logistic regression model trained on a small, tailored dataset consisting of labeled output from our system. Experimental results show that ranking nearly doubles the percentage of questions rated as acceptable by annotators, from 27% of all questions to 52% of the top ranked 20% of questions.

Creative Commons License

Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Share

COinS
 

Published In

Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 609-617.